Yetter-drinfeld Modules under Cocycle Twists

نویسندگان

  • GEORGIA BENKART
  • MARIANA PEREIRA
  • SARAH WITHERSPOON
  • Susan Montgomery
چکیده

We give an explicit formula for the correspondence between simple Yetter-Drinfeld modules for certain finite-dimensional pointed Hopf algebras H and those for cocycle twists H of H. This implies an equivalence between modules for their Drinfeld doubles. To illustrate our results, we consider the restricted two-parameter quantum groups ur,s(sln) under conditions on the parameters guaranteeing that ur,s(sln) is a Drinfeld double of its Borel subalgebra. We determine explicit correspondences between ur,s(sln)-modules for different values of r and s and provide examples where no such correspondence can exist. Our examples were obtained via the computer algebra system Singular::Plural.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cocycle Deformations and Brauer Group Isomorphisms

Let H be a Hopf algebra over a commutative ring k with unity and σ : H ⊗ H −→ k be a cocycle on H. In this paper, we show that the Yetter-Drinfeld module category of the cocycle deformation Hopf algebra H is equivalent to the Yetter-Drinfeld module category of H. As a result of the equivalence, the “quantum Brauer” group BQ(k,H) is isomorphic to BQ(k,H). Moreover, the group Gal(HR) constructed ...

متن کامل

Yetter-drinfeld Modules over Weak Hopf Algebras and the Center Construction

We introduce Yetter-Drinfeld modules over a weak Hopf algebra H, and show that the category of Yetter-Drinfeld modules is isomorphic to the center of the category of H-modules. The categories of left-left, left-right, right-left and right-right Yetter-Drinfeld modules are isomorphic as braided monoidal categories. Yetter-Drinfeld modules can be viewed as weak DoiHopf modules, and, a fortiori, a...

متن کامل

ar X iv : m at h / 04 09 59 9 v 3 [ m at h . Q A ] 1 A pr 2 00 5 YETTER - DRINFELD MODULES OVER WEAK BIALGEBRAS

We discuss properties of Yetter-Drinfeld modules over weak bialgebras over commutative rings. The categories of left-left, left-right, right-left and right-right Yetter-Drinfeld modules over a weak Hopf algebra are isomorphic as braided monoidal categories. Yetter-Drinfeld modules can be viewed as weak Doi-Hopf modules, and, a fortiori, as weak entwined modules. If H is finitely generated and p...

متن کامل

Yetter-drinfeld Modules over Weak Bialgebras

We discuss properties of Yetter-Drinfeld modules over weak bialgebras over commutative rings. The categories of left-left, left-right, right-left and right-right Yetter-Drinfeld modules over a weak Hopf algebra are isomorphic as braided monoidal categories. Yetter-Drinfeld modules can be viewed as weak Doi-Hopf modules, and, a fortiori, as weak entwined modules. If H is finitely generated and p...

متن کامل

3 More Properties of Yetter - Drinfeld Modules over Quasi - Hopf Algebras

We generalize various properties of Yetter-Drinfeld modules over Hopf algebras to quasi-Hopf algebras. The dual of a finite dimensional Yetter-Drinfeld module is again a Yetter-Drinfeld module. The algebra H 0 in the category of Yetter-Drinfeld modules that can be obtained by modifying the multiplication in a proper way is quantum commutative. We give a Structure Theorem for Hopf modules in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009